Optical in Situ Study of InP(100) Surface Chemistry: Dissociative Adsorption of Water and Oxygen

نویسندگان

  • Matthias M. May
  • Hans-Joachim Lewerenz
  • Thomas Hannappel
چکیده

Semiconductors designated for solar water-splitting need to be simultaneously stable and efficient in the charge transfer over the interface to the aqueous electrolyte. Although InP(100) has been employed as photocathode for several decades, no experimental data on its initial interaction with water is available. We study reaction mechanisms of well-defined surfaces with water and oxygen employing photoelectron and in situ reflection anisotropy spectroscopy. Our findings show that reaction path and stability differ significantly with atomic surface reconstruction. While the mixed-dimer Inrich surface exhibits dissociative water adsorption featuring In−O−P rather than unfavorable In−O−In bond topologies, the H-terminated, P-rich surface reconstruction is irreversibly removed. Oxygen exposure attacks the In-rich surface more efficiently and additionally modifies, unlike water exposure, bulk-related optical transitions. Hydroxyl is not observed, which suggests a dehydrogenation of adsorbed species already at ambient temperature. Our findings may benefit the design of InP(100) surfaces for photoelectrochemical water splitting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Dissociative Gas Adsorption with Different Chemisorption Geometries on Nanoporous Surfaces

Isotherm equation is one of the important scientific bases for adsorbent selection. There are different isotherms that do not account for an adsorbate, different chemisorption geometries on the nanoporous surface. It is interesting to introduce a general isotherm, which considers different chemisorption geometries of an adsorbate on nanoporous surfaces. In this study, an isotherm for non-dissoci...

متن کامل

THE ACTIVATION OF CARBON DIOXIDE AT A MAGNESIUM (1 00) SURFACE THE ROLE OF OXYGEN TRANSIENTS

X-ray photoelectron and high resolution electron energy loss spectroscopic (XPS-HREELS) studies have shown that the adsorption of carbon dioxide at Mg(100) surfaces at 80K is followed by a dissociative reaction leading to the formation of a metastable surface carbonate above 80K. The formation of a carbonate species is proposed to proceed through oxidation of C0 (g) by an active oxygen su...

متن کامل

CO Adsorption on the V (100) Surface: A Density Functional Study

Adsorption of CO molecule on the Vanadium surface has been studied by using of the DFT method with LANL2DZ,6-31G* and 6-31G** basis sets by GGA approximation of theory. Using periodic first principles simulations we investigate the interaction of oxygen molecule with regular V (100) surface. The limitation of this approach is the use of thin metallic slabs with a limited range for their coverag...

متن کامل

Reactivity of V2O3(0001) surfaces: molecular vs dissociative adsorption of water.

The adsorption of water on V2O3(0001) surfaces has been investigated by thermal desorption spectroscopy, high-resolution electron energy loss spectroscopy, and X-ray photoelectron spectroscopy with use of synchrotron radiation. The V2O3(0001) surfaces have been generated in epitaxial thin film form on a Rh(111) substrate with three different surface terminations according to the particular prep...

متن کامل

Ab-initio modeling of water-semiconductor interfaces for direct solar-to-chemical energy conversion

We perform extensive density-functional theory total-energy calculations and ab-initio molecular dynamics simulations to evaluate the stability and reactivity of surface oxides and hydroxides of InP(001) for photoelectrochemical water cleavage. In order to achieve maximal accuracy, our simulations include the full interface between the semiconductor surface and liquid water. Certain oxide conta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014